A green process for coupling manganese oxides with titanium(IV) dioxide[†]

Nanae Nishimura,^a Jyunya Tanikawa,^a Masashi Fujii,^a Tetsuro Kawahara,^{*b} Juichi Ino,^{*b} Tomoki Akita,^c Takayoshi Fujino^a and Hiroaki Tada^{*a}

Received (in Cambridge, UK) 7th March 2008, Accepted 2nd May 2008 First published as an Advance Article on the web 9th June 2008 DOI: 10.1039/b803989e

 MnO_2 nanoparticle-loaded TiO₂ prepared by a green process capable of removing harmful MnO_4^- ions from water exhibits catalytic activity for a test reaction, H_2O_2 decomposition, in the dark with its activity enhanced by UV light irradiation.

Increasing air and water pollution demands us to develop environmental purification catalysts, among which is metal-oxide semiconductor photocatalysts represented by TiO₂ having a photoinduced oxidation power strong enough to completely mineralize organic pollutants.^{1,2} A major problem of semiconductor photocatalysis is the low reaction efficiency due to the fast recombination of photogenerated charge carriers. The coupling of semiconductor photocatalysts with metal nanoparticles,^{3,4} different semiconductors,⁵⁻⁹ and the both¹⁰ is a promising approach to improve the charge separation efficiency through interfacial electron transfer. Another serious problem from a practical viewpoint is that photocatalysts are entirely inactive in the dark, which severely restricts their use. On the other hand, MnO₂ is known to exhibit thermally activated catalytic activity for the oxidation of organic pollutants,¹¹ although it falls short of the photocatalytic activity of TiO2. Thus, if MnO2 can be appropriately coupled with TiO₂, this heterostructured system would act as a powerful environmental catalyst working with and without light. In this case, the synthetic route should also be environmentally benign. KMnO4 contained in waste water from nonferrous metal manufactures causes water pollution because of its strong toxicity for aquatic life.¹²

Here we report a green process for preparing MnO₂ nanoparticle (NP)-loaded TiO₂ particles (MnO₂/TiO₂), further showing the complementary effects of MnO₂/TiO₂ on the (photo)catalytic activities for the decomposition of H₂O₂ employed as a model pollutant. Manganese oxide was loaded on anatase TiO₂ particles by a novel photodeposition method.‡ Fig. 1 shows the electronic absorption spectral change of deaerated aqueous KMnO₄ solutions with irradiation ($\lambda_{ex} > 300$ nm) in the absence (A) and

† Electronic supplementary information (ESI) available: Fig. S1: Electronic absorption spectra of β-MnO₂(*n*)/TiO₂ (*n* = 0, 1, 2, 3, 5). Fig. S2: Time courses for CH₃CHO decomposition in the dark and under irradiation for TiO₂ and for β-MnO₂(5)/TiO₂. Table S1: XPS binding energies for as-deposited and heated samples of β-MnO₂(5)/ TiO₂. See DOI: 10.1039/b803989e

presence (B) of TiO₂: initial KMnO₄ concentration ([KMnO₄]₀) = 1 mmol dm⁻³, and the initial pH (pH₀) 7. The aqueous solution of KMnO₄ has two broad absorptions centred at 300 (B_1) and 550 nm (B_2) . These two absorption bands are characterized by quantum chemical calculations as the excitations from the nonbonding orbitals of oxygen to the antibonding orbitals between metal and oxygens.¹³ When the KMnO₄ solution was irradiated without TiO_2 (Fig. 1(A)), the absorption intensity below 500 nm increases, whereas that of B_2 is almost invariant. No precipitates were observed even after 3 h irradiation. Partial photodecomposition of MnO_4^{-1} ions to MnO_4^{2-1} ions and O_2^{14} seems to be responsible for the spectral change. On the other hand, with TiO₂ (Fig. 1(B)), both the absorption intensities of B_1 and B₂ rapidly decrease. This drastic difference in the spectral change between (A) and (B) suggests that a distinct reaction takes place in the presence of TiO₂, and the self-photoreduction of $\mathrm{MnO_4^{-}}$ ions is negligible under the conditions.

After 2 h irradiation to a 1.74 mmol dm⁻³ KMnO₄ solution containing TiO₂ particles (3.0 g), they were recovered by centrifugation, and the same procedures were repeated *n* times. Transmission electron microscopic (TEM) observation and

Fig. 1 Electronic absorption spectral change of an aqueous solution of $KMnO_4$ with irradiation ($\lambda_{ex} > 300$ nm) without (A) and with TiO_2 (B): $[KMnO_4]_0 = 1$ mmol dm⁻³; pH₀ 7.

^a Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan. E-mail: h-tada@apch.kindai.ac.jp; Fax: +81-6-6727-4301; Tel: +81-6-6721-2332

^b Nippon Sheet Glass Co. Ltd., 2-13-12, Konoike, Itami, Hyogo, 664-8520, Japan.

E-mail: TetsuroKawahra@mail.nsg.co.jp;JuichiIno@mail.nsg.co.jp; Fax: +81-72-779-6906; *Tel:* +81-72-781-0081

^c National Institute of Advanced Industrial Science and Technology, Midorigaoka 1-8-31, Ikeda, Osaka, 563-8577, Japan

electron energy loss spectroscopic (EELS) measurements were carried out for a sample (n = 5). Fig. 2(A) and (B) show TEM images for as-deposited and heated samples, respectively: heating conditions, 873 K for 2 h. The shape of nanometer-sized particles (NPs) deposited on the TiO₂ surface changes from stick-like to cubic as a result of the heat treatment. Fig. 2(C) compares O K-edge structures of EELS obtained for as-deposited and heated samples by an irradiating electron beam focused on locations (a) and (b) in Fig. 2(A) and (B), respectively.¹⁵ The profiles of the spectra are quite different, and spectra (a) and (b) resemble those of Mn₃O₄ and MnO₂, respectively. Also, a high-resolution (HR)-TEM image (Fig. 2(D)) shows clear crystal-lattice fringes, for which distances are in agreement with those of the (101) and (110) planes of β-MnO₂ (ICDD No. 24-0735).

X-Ray photoelectron spectroscopic (XPS) measurements for the heated sample provided a $Mn 2p_{3/2}$ binding energy of 642.5 eV, which is close to the value reported for β -MnO₂ (642.6 eV) (Table S1, ESI^{\dagger}).¹⁶ On the other hand, the fact that the Mn $2p_{3/2}$ binding energy for the as-deposited sample is lower (642.3 eV) is consistent with the conclusion that the deposits are Mn₃O₄. Also, the surface atom% ratio of Mn/Ti decreased from 0.29 to 0.15 with the heat treatment. This indicates the increase in the degree of the surface exposure of TiO₂, reflecting the change in the number density and morphology of the deposits with heating. As a result of β-MnO₂ loading, broad absorption due to d-d transition appears in the visible region¹⁷ with its intensity increased with increasing n, whereas TiO₂ has only absorption below 385 nm (Fig. S1 in ESI⁺). Evidently, UV-light irradiation to aqueous KMnO₄ solutions in the presence of TiO₂ particles leads to the deposition of stick-shaped Mn₃O₄ NPs, which are changed to cubic β -MnO₂ by heating at 873 K for 2 h.

The material balance of the reaction was checked. Fig. 3(A) shows the amounts of reactant and products, and pH as a function of t_p . The sum of the amount of Mn remaining in the solution (a)

Fig. 2 TEM images for as-deposited (A) and heated samples (B). (C) EELS for as-deposited (a) and heated samples (b). D, HRTEM image of the heated sample.

Fig. 3 (A) The material balance of the reaction: (a) Mn remaining in the solution; (b) Mn deposited on TiO_2 ; (c) total Mn amount; (d) pH; (e) O_2 . (B) Plots of the amount of Mn deposited and the yield *vs. n.*

and that deposited on TiO₂ (b) is almost equal to the total amount (c) irrespective of t_p , which indicates that MnO₄⁻ is quantitatively removed from the solution. Upon irradiation, the pH (d) of the solution increases concurrently with the generation of O₂ (e). The ratio of the amount of MnO₄⁻ decreased (0.27 mmol) to that of O₂ generated (0.081 mmol) is *ca*. 3 at $t_p = 2$ h. Thus, the overall photodeposition of Mn₃O₄ can be written by eqn (1).

$$3\mathrm{MnO}_{4}^{-} + 12\mathrm{H}^{+} \xrightarrow{\mathrm{TiO}_{2},h\nu} \mathrm{Mn}_{3}\mathrm{O}_{4} + 6\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2} \qquad (1)$$

On the basis of these results, the essential mechanism on this reaction is summarized as follows. UV light irradiation to TiO₂ gives rise to excitation of electrons in the valence band (vb) to the conduction band (cb). In the cathodic process, MnO_4^- ions having strong oxidation power effectively accept the excited electrons from TiO₂ to be deposited as Mn₃O₄ NPs on the surface (Mn₃O₄/TiO₂). In the anodic process, the holes left in the vb oxidize adsorbed H₂O to produce H⁺ and O₂. Further, Mn₃O₄ NPs are changed to $\beta\text{-}MnO_2$ NPs by heating at 873 K. Photodeposition of various metal particles^{3,4} and chalcogenides⁶ on semiconductors via the photocatalytic reduction process is well known; however, metal oxide photodeposition is limited to those of Cu₂O on TiO₂ from Cu²⁺ ions¹⁸ and Cr(OH)₃ from Cr⁶⁺ ions on TiO₂,¹⁹ and Co₃O₄ from Co²⁺ ions on ZnO.²⁰ Fig. 3(B) shows the amount of Mn deposited from the aqueous solution (a) and the yield (b) as a function of n. The amount of Mn deposited increases in proportion to n, and each yield after 2 h irradiation ranges between 60 and 75%. Further, it was confirmed by inductively coupled plasma spectroscopy that the MnO₄⁻ ions in the solution is almost completely removed at $t_p \ge 2.5$ h. Thus, this method is useful for the removal of MnO₄⁻ ions from water as well as a technique of MnO₂-TiO₂ coupling.

Fig. 4 (Photo)catalytic activities of β -MnO₂/TiO₂ for H₂O₂ decomposition in the dark (a) and under irradiation (b).

The decomposition of H₂O₂, widely used as a test catalytic reaction,²¹ is also of importance for waste water treatment in semiconductor industries.²² Fig. 4 shows the decomposition ratio of H_2O_2 (reaction time = 1 h) in the presence of β -MnO₂/TiO₂ in the dark and under UV light irradiation $(\lambda_{ex} > 300 \text{ nm})$. In the dark, β -MnO₂/TiO₂ exhibits catalytic activity for the H₂O₂ decomposition of which the rate increases with an increase in the loading amount of β-MnO₂, whereas TiO₂ is inactive by itself. The generation of O₂ during this reaction was confirmed using an O2 meter. Interestingly, irradiation accelerates the decomposition in every case, and more than 80% of H₂O₂ is decomposed with β -MnO₂(1.1 mass%)/TiO₂ after only 1 h irradiation. H₂O₂ can be decomposed by both cbelectrons and vb-holes in TiO_2 ²³ In the former, H_2O_2 are reduced to OH⁻ and •OH, while in the latter, H₂O₂ are oxidized to produce O_2^{-} . This finding demonstrates the complementary effect of thermally activated active MnO₂ and TiO₂ photocatalyst for the decomposition of H₂O₂. The (photo)catalytic activities of β -MnO₂/TiO₂ for the decomposition of CH₃CHO, a common indoor air pollutant, were examined as an additional test reaction (Fig. S2, ESI[†]). From the experiments at room temperature in the dark, the decreases in the CH₃CHO concentration due to adsorption for 1 h in the TiO₂ and β -MnO₂/TiO₂ systems were found to be below 30 ppm. Even in the dark at 423 K, TiO₂ showed a catalytic activity, which slightly increased with irradiation. Interestingly, the catalytic activities in the dark and under irradiation significantly increased with loading 2.47 mass% of β -MnO₂. These findings also indicate the synergy effect of β -MnO₂ and TiO₂. The optimization of the size and distribution of β-MnO₂ NPs could increase the catalytic activity.¹¹

In summary, manganese oxide-coupled TiO₂ was prepared by a green process capable of removing harmful MnO₄⁻ ions from water. β -MnO₂/TiO₂ prepared by post-heating exhibited catalytic activity for the H₂O₂ decomposition in the dark, which was enhanced with UV light irradiation. This coupled system can be expected to apply to not only water purification but air purification.

Notes and references

 \ddagger Anatase TiO₂ particles having a specific surface are of 8.1 m² g⁻¹ (3 g, A-100, Ishihara Techno Co.) were suspended in a KMnO₄ aqueous solution set to pH 7 with NaOH aq. The initial concentration of KMnO₄ was 1.74 mmol dm⁻³ unless otherwise noted in the text. After the suspension in a double-jacket type reaction cell had been purged with Ar for 0.5 h, UV light irradiation ($\lambda_{ex} > 300 \text{ nm}$, $I_{310-400} \text{ nm} = 8.5 \text{ mW}$ cm⁻²) was started using a 400 W high-pressure mercury arc (H-400P,

Toshiba) with Ar-bubbing and stirring continued throughout the irradiation. The reaction temperature was kept at 298 K by circulating thermostated water through the outer jacket around the cell. After irradiation, the particles were recovered by centrifugation, and these procedures were repeated n times. The resulting particles were washed with distilled water, dried under vacuum, and then heated at 873 K in air for 2 h. The manganese oxides deposited TiO₂ particles were completely dissolved by treating the particles (0.1 g) with 10 mL aqua regia. After the solution had been diluted to 50 mL with water, the amount of Mn was determined by inductively coupled plasma spectroscopy (ICPS-7500, Shimadzu). The electronic absorption spectra of the KMnO₄ solutions and the particles were measured by UV/Vis spectroscopy (U-4000, Hitachi). HRTEM observation and EELS measurements were performed using a JEOL JEM-3000F and Gatan Imaging Filter at an applied voltage of 300 or 297 kV at an applied voltage of 300 kV. Catalytic activities of β -MnO₂/TiO₂ for the decomposition of H₂O₂ were examined in the dark and under irradiation ($\lambda_{ex} > 300 \text{ nm}$, $I_{310-400} \text{ nm}$ 4.0 mW cm⁻²) using the same experimental set up in the photodeposition of manganese oxides. β -MnO₂/TiO₂ particles (50 mg) were dispersed in a 4 mmol dm⁻³ H_2O_2 aqueous solution. UV light was irradiated to the suspension in a double-jacket type reaction cell with stirring. In both the dark and photocatalytic reactions, the cell temperature was kept at 298 K by circulating thermostated water through the outer jacket around the cell. After 1 h, the suspension was filtered and conc. H₂SO₄ (1.25 mL) was added to the filtrate (5 mL), and the concentration of H2O2 in the solution was determined by KMnO4 titration. Also, the change in the O₂ concentration in the solution was traced using an O₂ meter (DO-11P, Toadenpa Kogyo Co.). The (photo)catalytic activities were evaluated also for gas-phase oxidation of CH₃CHO. The sample (50 mg) was spread in a stainless holder (30 mm ϕ) and placed in a vacuum chamber. A 500 ppm standard CH₃CHO gas (balance: N_2) was introduced into it and diluted with air such that its initial concentration was kept ca. 320 ppm. The reaction was run at 423 K in the dark and under irradiation ($\lambda > 300 \text{ nm}, I_{320-400} = 3.0 \text{ mW}$ cm^{-2}) using a 300-W xenon lamp (Wacom, HX-500). The concentration of CH₃CHO was determined by gas chromatography (Shimadzu, GC-2014) with an f.i.d. column SHINCARBON A (3 mm $\phi \times$ 3 m).

- 1. K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 2005, 44. 8269.
- C. G. Granqvist, A. Azens, P. Heszler, L. B. Kish and 2. L. Osterlund, Sol. Energy Mater. Sol. Cells, 2007, 91, 355.
- 3. P. D. Cozzoli, E. Fanizza, R. Comparelli, M. Curri, A. Lucia, A. Agostiano and D. Laub, J. Phys. Chem. B, 2004, 108, 9623. V. Subramanian, E. E. Wolf and P. V. Kamat, J. Am. Chem. Soc.,
- 2004, 126, 4943.
- 5. K. Rajeshwar, N. R. De Tacconi and C. R. Chenthamarakshan, Chem. Mater., 2001, 13, 2765.
- V. N. H. Nguyen, R. Amal and D. Beydoun, J. Photochem. Photobiol. A: Chem., 2006, 179, 57-65.
- 7. H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 2000, 104, 4585.
- S. Daxin, F. Yaqing and Z. Shunhe, *Catal. Today*, 2004, **98**, 505.
 M. Long, W. Cai and H. Kisch, *J. Phys. Chem. C*, 2008, **112**, 548.
- 10. H. Tada, T. Mitsui, T. Kiyonaga, T. Akita and K. Tanaka, Nat. Mater., 2006, 5, 702
- 11. A. K. Sinha, K. Suzuki, M. Takahara, H. Azuma, T. Nonaka and K. Fukumoto, Angew. Chem., Int. Ed., 2007, 46, 2891.
- Commission of European Communities, Luxumbourg, 1993, p. 125. 12.
- 13. H. Nakai, Y. Ohmori and H. Nakatsuji, J. Chem. Phys., 1991, 95, 8287.
- 14. D. G. Lee, C. R. Moylan, T. Hayashi and J. I. Brauman, J. Am. Chem. Soc., 1987, 109, 3003.
- 15. H. Kurata and C. Colliex, Phys. Rev. B., 1993, 48, 2102.
- 16. C. Poisignon, G. Berthome, B. Prelot, F. Thomas and F. Villieras, J. Electrochem. Soc., 2004, 151, A1611.
- 17. N. Sakai, Y. Ebina, K. Takada and T. Sasaki, J. Phys. Chem. B, 2005, **109**, 9651.
- 18. J. W. M. Jacobs, F. W. H. Kampers, J. M. G. Rikken, C. W. T. Bulle-Lieuwma and D. C. Koningsberger, J. Electrochem. Soc., 1989, 136, 2914.
- 19 W.-Y. Lin, C. Wei and K. Rajeshwar, J. Electrochem. Soc., 1993, 140, 2477.
- 20. Y. Tak and K. Yong, J. Phys. Chem. C, 2008, 112, 74.
- 21. N. S. Youssef, E. S. Kamel and M. M. Selim, Bull. Soc. Chim. Fr., 1991, 12, 648
- 22 A. Mayer and D. A. Puotinen, Nat. Bur. Stand., 1970, 431.
- 23. T. Hirakawa and Y. Nosaka, Langmuir, 2002, 18, 3247.